Machine learning reveals hidden stability code in protein native fluorescence
نویسندگان
چکیده
منابع مشابه
Protein painting reveals solvent-excluded drug targets hidden within native protein–protein interfaces
Identifying the contact regions between a protein and its binding partners is essential for creating therapies that block the interaction. Unfortunately, such contact regions are extremely difficult to characterize because they are hidden inside the binding interface. Here we introduce protein painting as a new tool that employs small molecules as molecular paints to tightly coat the surface of...
متن کاملHidden Technical Debt in Machine Learning Systems
Machine learning offers a fantastically powerful toolkit for building useful complex prediction systems quickly. This paper argues it is dangerous to think of these quick wins as coming for free. Using the software engineering framework of technical debt, we find it is common to incur massive ongoing maintenance costs in real-world ML systems. We explore several ML-specific risk factors to acco...
متن کاملMorpheo: Traceable Machine Learning on Hidden data
Morpheo is a transparent and secure machine learning platform collecting and analysing large datasets. It aims at building state-of-the art prediction models in various fields where data are sensitive. Indeed, it offers strong privacy of data and algorithm, by preventing anyone to read the data, apart from the owner and the chosen algorithms. Computations in Morpheo are orchestrated by a blockc...
متن کاملMachine learning reveals orbital interaction in materials
We propose a novel representation of materials named an 'orbital-field matrix (OFM)', which is based on the distribution of valence shell electrons. We demonstrate that this new representation can be highly useful in mining material data. Experimental investigation shows that the formation energies of crystalline materials, atomization energies of molecular materials, and local magnetic moments...
متن کاملContextual Code Completion Using Machine Learning
Large projects such as kernels, drivers and libraries follow a code style, and have recurring patterns. In this project, we explore learning based code recommendation, to use the project context and give meaningful suggestions. Using word vectors to model code tokens, and neural network based learning techniques, we are able to capture interesting patterns, and predict code that that cannot be ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational and Structural Biotechnology Journal
سال: 2021
ISSN: 2001-0370
DOI: 10.1016/j.csbj.2021.04.047